Vegas revisited: Adaptive Monte Carlo integration beyond factorization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration Beyond Factorization

We present a new adaptive Monte Carlo integration algorithm for ill-behaved integrands with non-factorizable singularities. The algorithm combines Vegas with multi channel sampling and performs significantly better than Vegas for a large class of integrals appearing in physics.

متن کامل

Replica Monte Carlo Simulation (revisited)

In 1986, Swendsen and Wang proposed a replica Monte Carlo algorithm for spin glasses [Phys. Rev. Lett. 57 (1986) 2607]. Two important ingredients are present, (1) the use of a collection of systems (replicas) at different of temperatures, but with the same random couplings, (2) defining and flipping clusters. Exchange of information between the systems is facilitated by fixing the τ spin (τ = σ...

متن کامل

The Fermion Monte Carlo revisited

In this work we present a detailed study of the Fermion Monte Carlo algorithm (FMC), a recently proposed stochastic method for calculating fermionic ground-state energies. A proof that the FMC method is an exact method is given. In this work the stability of the method is related to the difference between the lowest (bosonic-type) eigenvalue of the FMC diffusion operator and the exact fermi ene...

متن کامل

An adaptive Monte Carlo integration algorithm with general division approach

We propose an adaptive Monte Carlo algorithm for estimating multidimensional integrals over a hyper-rectangular region. The lgorithm uses iteratively the idea of separating the domain of integration into 2subregions. The proposed algorithm can be applied irectly to estimate the integral using an efficient way of storage. We test the algorithm for estimating the value of a 30-dimensional ntegral...

متن کامل

Adaptive Stratified Sampling for Monte-Carlo integration of Differentiable functions

We consider the problem of adaptive stratified sampling for Monte Carlo integration of a differentiable function given a finite number of evaluations to the function. We construct a sampling scheme that samples more often in regions where the function oscillates more, while allocating the samples such that they are well spread on the domain (this notion shares similitude with low discrepancy). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 1999

ISSN: 0010-4655

DOI: 10.1016/s0010-4655(99)00209-x